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ABSTRACT

The Modified Garabedian-McFadden (MGM) design procedure was incorporated into an

existing 2D multigrid Navier-Stokes airfoil analysis method. The resulting design method is

an iterative procedure based on a residual-correction algorithm and permits the automated design

of airfoil sections with prescribed surface pressure distributions. The new design method, MG-

MGM, is demonstrated for several different transonic pressure distributions obtained from both

symmetric and cambered airfoil shapes. The airfoil profiles generated with the MG-MGM code

are compared to the original configurations to assess the capabilities of the inverse design method.

INTRODUCTION

The aerodynamic design of aircraft components is often carried out by means of one of the

following four approaches: a) cut-and-try analysis, b) indirect methods, c) optimization techniques,

and d) inverse design techniques. Unlike the cut-and-try method, the latter three design techniques

are far more automated, and can significantly reduce the overall engineering effort and calendar

time required for developing aircraft components and configurations with improved aerodynamic

performance or aerodynamic interference characteristics.

A common design approach is to specify, a priori, surface pressure distributions that have fa-

vorable aerodynamic characteristics at given freestream conditions. For example, an appropriately

chosen pressure distribution can be used to achieve certain desired lift and moment coefficient

goals, while a "weak-shock" or "shock-free" distribution can be used to minimize wave drag

performance penalties. The automated design procedure is then used to generate, as efficiently

as possible, the configuration geometry which will cause the specified pressures to exist on the
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designed component. Obviously, the use of these automated design methods requires that the

aerodynamicist can specify, a priori, the desired pressure distributions for a particular application.

The most widely used aerodynamic design procedures for transonic-flow applications seem to

be based upon potential-flow Computational Fluid Dynamics (CF"D) methods. 1-5 This trend is most

likely due to the relative low cost, in terms of computer-resource requirements, that is demonstrated

by CFD methods based on the Transonic Small Disturbance CTSD) equation or the Full Potential

equation (FPE). In the past decade, however, considerable interest has been demonstrated in the

use of higher-order CFD methods such as the Euler equations and the Reynolds-averaged Navier-

Stokes equations (RANS) for aerodynamic analyses in a variety of applications. Thus, there is

now an increasing interest in also developing design procedures based on these higher-order CFD

formulations, s-t° If used during the design process, these higher-order CFD methods will help the

aerodynamicist to account for the occurrence of fluid dynamic effects or phenomena which are

not routinely predictable using potential flow methods.

In reference 11, Garabedian and McFadden described an inverse aerodynamic design procedure

which they demonstrated using an existing FPE aerodynamics code. Their design method is based

on a residual-correction algorithm, which we will refer to here as the GM method, and can be

used to generate aerodynamic surfaces with prescribed surface pressure distributions. In reference

12, Malone, et al. presented a M___odifiedGarabedian McFadden (MGM) design algorithm that

removed some limitations of the original GM technique. These authors applied the new MGM

design method, also using FPE aerodynamic analysis codes as a basis, to airfoil, axisymmetric

nacelle inlet, and 3-D nacelle inlet design problems. Later, Hazarika 13 and Sankar used a FPE

CFD method to apply the MGM procedure to the design of blended wing-body configurations.

In a recent effort, Malone, et al. 14 described the first use of the MGM residual-correction design

algorithm coupled with a 2-D Navier-Stokes solution procedure. Subsequently, a similar viscous-

flow design procedure using MGM was presented by Birckelbaw tS, and new applications of MGM

to multi-element airfoils using unstructured grids are under development, t6

The objective of the present research was to develop an accurate design method for viscous,

attached-flow, design problems which might be beyond the capability of potential-flow or Euler

methods, even those using interactive boundary-layer theories. Because the aerodynamic designer

normally seeks attached flow conditions, the method to be described is not expected to handle

separated flow design problems. However, by virtue of the fact that a Navier-Stokes method forms

the basis of the present procedure, the possible occurrence and extent of separated flow regions

can be directly computed and noted by the designer during the design process.

The following sections of this paper will describe the multigrid Navier-Stokes computational

procedure, the MGM design algorithm, implementation of the design procedure, and will also

present the results of several sample airfoil design problems.

NAVIER-STOKES SOLUTION PROCEDURE

The two-dimensional Navier-Stokes procedure used in the present work was originally de-

veloped by Swanson and Turkel. 17 Their method solves the Reynolds-averaged form of the full

Navier-Stokes equations (neglecting body forces and heat sources) on a body-fitted computational

grid. The mathematical formulation in generalized coordinates consists of a non-dimensionalized
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set of equations cast in a strong conservative form:

Qt + D( + E n : v/"_3l_Re-[' (G( + Hn) (1)

In Eq. (1), Q is the vector of conserved flow variables, which are themselves combinations

of the usual primitive variables, density (p), the components of fluid velocity (u, v), and the fluid

total energy (e). The quantity Moo is the freestream Mach number and, Rec is the Reynolds

number. The vectors D and E are the inviscid flux vectors in the ( and r/ coordinate directions,

respectively. Also, the vectors G and H are the viscous flux terms in the corresponding coordinate

directions. The techniques used to solve Eq. (1) are given in Refs. 17, 18, and 19. Here we

present only a brief description of the Navier-Stokes solution procedure.

The spatial derivatives in the time-dependent Navier-Stokes equations are approximated

with central differences. A cell-centered finite-volume technique is used to obtain the spatial

discretization. For sufficiently smooth meshes the discretizations are second-order accurate.

Adaptive numerical dissipation terms are appended to the resulting semidiscrete formulation.

These terms, which are a blending of second and fourth differences, are included to provide

shock capturing capability and to give the necessary background dissipation for convergence. In

smooth regions of a flow field the dissipation terms are third order. The semidiscrete equations

are integrated in time with a modified five stage explicit Runge-Kutta scheme. On the first, third,

and fifth stages there is a weighted evaluation of the dissipation terms, which results in a good

parabolic stability limit. The physical diffusion terms are evaluated only on the first stage and

frozen for the remaining stages, without compromising stability. The decoupling of the temporal

and spatial discretization makes the scheme amenable to convergence acceleration techniques,

which are very beneficial in the computation of steady flows.

Three techniques are employed to accelerate convergence to steady state. The first one is local

time-stepping, where the solution at any point in the domain is advanced at the maximum time step

allowed by stability. This results in faster signal propagation, and thus, faster convergence. The

second technique is variable coefficient implicit residual smoothing. It can be regarded as simply

a mathematical step applied after each Runge-Kutta stage to extend the local stability range. The

third technique is multigrid. A multigrid method involves the application of a sequence of meshes

to a discrete problem to accelerate convergence of the time-stepping scheme. Successively coarser

meshes can be generated by starting with the desired fine mesh and eliminating every other mesh

line in each coordinate direction. An equivalent fine grid problem is defined on each coarse grid.

Appropriate operators are introduced to transfer information between the meshes. In the method

applied here a fixed W-type cycle is used to execute the muhigrid strategy. The efficiency of the

multigrid process depends strongly upon effective high frequency damping characteristics of the

driving scheme. Such damping behavior is provided by the five stage Runge-Kutta scheme. The

good smoothing of the highest frequencies on the coarser meshes allows rapid removal of the low

frequency errors in the fine grid solution. There are two additional advantages of the multigrid

method. First, less computational effort is

is propagated faster on the coarser meshes

Figure 1 presents typical computed lifts

required on the coarser meshes. Second, information

due to larger allowable time steps.

and moments for an NACA 0012 airfoil to demonstrate

the capability of the muhigrid algorithm for aerodynamic analysis applications. Turbulence closure

was obtained with the Baldwin -Lomax model.
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MGM DESIGN PROCEDURE

The MGM design method can be classified as a residual-correction technique, in which the

residuals are the difference between the desired speed distribution and the computed distribution.

Over the past decade a number of residual-correction methods have been developed, such as the

"wavy-wall" approach of Davis. 2° The methods differ primarily in the manner in which changes

in residual are related to changes in surface shape. The MGM algorithm itself consists of an

auxiliary PDE that is solved for incremental changes in surface coordinates during each design

cycle. The final aerodynamic shape is approached in a stepwise fashion through a cyclical iteration

between the flow solver and the MGM algorithm.

Mathematical Formulation

The MGM auxiliary PDE is heuristic in derivation and assumes that changes in surface

pressures are proportional to changes in airfoil surface slopes and curvatures. For two-dimensional

flow about an airfoil configuration, the auxiliary equation is given by

FoSt + F1Szt + F2Szzt = R (2)

where R is the residual, defined as R = q_ - q_. The quantities qc and qt are the computed

and target speed distributions, the coordinate z is the usual cartesian coordinate taken here to lie

along the airfoil chordline, and the coefficients F0, F1, and F2 are constants chosen to provide

a stable iterative process. Figure 2 shows how this auxiliary equation is typically incorporated

into existing flow solution procedures. The computed surface velocities are normally obtained

from partially converged numerical solutions to the flow equations under consideration at a given

value of time, t. During the design process, as qc approaches qt, the right-hand side of Eq. (2) is

reduced, and subsequent solutions of the auxiliary equation yield minimal changes in the airfoil

surface coordinates.

Next, Eq. (2) is written in terms of a correction to the airfoil coordinates, AS, by using the

temporal derivatives and choosing At = 1, so that Eq. (2) can then be written as:

Fo",S + FI(AS) + = (3)

Numerical Solution Procedure

The auxiliary PDE is solved by writing finite-difference expressions for each term of Eq.

(3). The computational grid used to solve this equation is the same grid used for the fluid-

dynamic equations, which for the present Navier-Stokes solver, is an algebraically generated

C-grid topology. Equation (3) is solved only along the airfoil surface, so that only the grid-line

clustering in the 2: or streamwise direction is of importance.

Assuming that there are a total of N computational points on the airfoil surface, Eq. (3) is

written for each of these points, i, where 1 < i < N. A typical equation evaluated at the i th

point on the surface is

AiA}q+I + BiA}'i + CiA}'i-1 = R, (4)
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The coefficients Ai, B,, and C, are evaluated by means of standard finite difference expressions,

and A]q . is the incremental change in surface coordinate, AS, at the i th computational point.

Equation (4) is evaluated at each point, i, around the airfoil surface, leading to a system of

equations with N unknowns, the A} i values. At each point on the aerodynamic surface, A]_ is

coupled to values at each neighboring point. The resulting algebraic equations form a tridiagonal

system that is solved for values of A7_'i using the Thomas algorithm. 21

The design cycle is completed by updating the previous surface geometry using the new

values of A]_ as follows:

y.,.,e,,, = }_ota N, + A}'_, for i = 1 to (5)

Additional details of the MGM algorithm can be found in References I2 and 14.

Trailing-Edge Crossover

The present inverse procedure was developed to permit the design of complete airfoil surfaces,

including the leading-edge and trailing-edge regions. However, a completely arbitrary choice for

a target pressure distribution does not always result in a well-posed inverse design problem.

For example, Volpe 4 has presented a technique to satisfy the three integral constraints relating

target pressures and freestream conditions that are required to insure a well-posed problem in

compressible flow. As a possible consequence of using unconstrained target pressures, any inverse

procedure may produce an airfoil geometry which may exhibit trailing-edge crossover, or lead to

other unrealistic configurations.

Therefore an artifice is used in the present work so that the trailing edge thickness can be

controlled and so that any tendency of the airfoil to "fish-tail" is identified. If the geometry

is driven to a "fish-tail" configuration (trailing-edge crossover), a linear wedge is added to the

airfoil section so that the resulting trailing-edge thickness equals a predetermined value. It has

been demonstrated that this wedge technique can give some measure of control over the potential

manufacturability of airfoil configurations generated by automated design procedures. 22 It should

be noted that if the above wedging technique is required continuously during the design process,

the original target pressures should be examined for possible modification along the lines discussed

by Volpe 4. A technique such as this may be used to modify these pressure distributions in order

to rigorously provide for a well posed inverse design problem.

RESULTS

The MGM design procedure has been incorporated into the 2-D Navier-Stokes code described

previously. The resulting computer program is referred to here as the MG-MGM code. In this

section, we present three sample problems to illustrate application of the design method. Target

pressures are obtained from a known "target geometry", and the inverse design method is then

used to "reproduce" the original "target" configuration. These test cases demonstrate that the

starting geometry, or baseline configuration, used to start the design process does not have to be

"close" in thickness or camber to the target geometry.
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Several parameters were held constant for each of the sample problems. A "W-type" multigrid

cycle was used throughout, together with five successive levels of grid refinement. Also, five

"W"multigrid cycles were used between all airfoil geometry updates (ie. one design cycle). The

computational C-grid used consisted of 321 nodes in the wrap-around, or (-direction (33 of these

in the wake region) and 64 nodes in the surface-normal, or r/-direction, for a total of 20,544 grid
points. The first 71 = constant grid line was clustered to within 0.000! chord lengths from the

airfoil surface. Since each point on the airfoil surface is allowed to move independently, each

can be thought of as an independent variable in the context of an optimization problem. For the

cases presented above, there were 257 such points around the airfoil surface.

For each case presented, a total of 160 design cycles (i.e. geometry updates) were specified.

The program was executed on a Cray 2 and each airfoil design required approximately 16 minutes

of CPU. Comparable Euler designs would require approximately 11 minutes on the same machine

for a similarly dimensioned grid.

Design Case No. 1

For Case No. 1, the MG-MGM code was first used in the analysis mode to compute the

surface pressures corresponding to an RAE 2822 airfoil at 3I_ ---0.8, an angle of attack, a, equal

to zero degrees, and Rec = 6,500,000, based on airfoil chord.

This calculated Cv distribution was then used as a target distribution for the MG-MGM code

operated in the design mode. The baseline airfoil used to start the design was an NACA 0012

section. As shown in Fig. 3, this airfoil is significantly different in shape from the RAE 2822

airfoil used to produce the target pressure distribution. In this figure, as well as others depicting

airfoil geometry, the vertical scale has been expanded.

Figure 4 compares the design and target airfoil pressures after 40 design cycles while Fig.

5 compares the design and target airfoil contours at this point in the design process. Figures 6

and 7 present the corresponding comparisons for pressure and geometry after 160 design cycles.

Figure 8 shows the results of a separate analysis computation performed after the design was

completed. This analysis started from uniform freestream conditions (impulsive start) and used

the grid produced by the designed airfoil contour given in Fig. 7. The comparison between design

and target pressures is actually better than that observed during the design process. This better

correlation exists because the pressures obtained during the design process are generated with only

a small number of multigrid cycles on the latest computational grid. The final design corresponds

to 160 updates to the airfoil geometry and 160 grid-generation steps. The MGM design algorithm

itself is not computationally intensive, and because a simple algebraic grid generation scheme is

also used in the present application, the computational overhead represents only a small fractional

increase over that which would be required to run the original CFD method in the analysis mode.

Design Case No. 2

For Case No. 2, the MG-MGM code was used in the analysis mode to compute the surface

pressures corresponding to an NACA 0012 airfoil at M_ = 0.8, an angle of attack, a = 2.0

degrees, and Rec = 6,500,000, based on airfoil chord.

This calculated Cp distribution was again used as a target distribution for the MG-MGM code

operated in the design mode. This time the baseline airfoil was also an NACA 0012 section.
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However, during the design process, the freestream angle of attack was kept at a = 0.0 degrees.

This case was used to study the possible effects that a mismatch between specified pressures and

angle of attack might have on the design process. Figure 9 compares the baseline and target airfoil

pressures for this case. As would be expected for a transonic flight condition, the shock wave

locations are significantly different for the a = 2.0 targets and the o = 0.0 baseline condition.

Figure 10 compares the design and target airfoil pressures after 40 design cycles, while Fig.

11 compares the design and target airfoil contours at this point in the design process. As can be

seen in Fig. 11, after 40 design cycles the airfoil surface has already been rotated upwards to

adjust to the target pressure. Figure 12 presents a comparison of the geometry after 160 design

cycles. As in the previous case, a separate analysis run was performed to verify the airfoil design.

Figure 13 shows the results of the separate analysis computation performed after the design was

completed. This analysis started from uniform freestream conditions (impulsive start) and used

the grid produced by the designed airfoil contour given in Fig. 12. Finally Fig. 14 shows a

plot of the average _q2 versus multigrid work for the 800 multigrid cycles. This quantity drops

approximately two orders of magnitude during the design process and is used to monitor the

progress of the design algorithm.

Design Case No. 3

The final example problem, design Case No. 3, was chosen to demonstrate that large geometric

changes can be achieved with the MGM design algorithm. For this application, the target pressures

corresponded to an NACA 0012 airfoil at Moo= 0.8, angle of attack, a = 0.0 degrees, and Rec

= 6,500,000, based on airfoil chord. The baseline configuration used was an NACA 0006 airfoil.

A comparison of the target and final design airfoil shapes is shown in Fig. 15. A comparison

of the target pressures, and those obtained from a separate analysis (impulsive start) of the final

design configuration are shown in Fig. 16. In this example, an airfoil design was successfully

accomplished which required a 100% increase in airfoil thickness over that of the baseline airfoil

shape.

CONCLUDING REMARKS

The MGM design procedure has been incorporated into an existing multigrid Navier-Stokes

code. The computational efficiency of the method indicates that it is a viable tool for the

design process. The actual computational effort of this design method depends, of course, on

the complexity of the target pressure distributions chosen. Normally, aerodynamicists would seek

to eliminate shockwaves due to the impact of wave drag on performance. Previous experience

with the MGM algorithm 14 indicates that shock-free design applications require about 50% less

computational effort than for flows with shockwaves present. The transonic flow cases shown

here were picked, in part, to demonstrate the design algorithm's robustness and ability to respond

correctly to shockwaves in the flowfield. This feature is important because regions of sonic flow

may be created locally near regions of high airfoil curvature even at relatively low freestream

Mach numbers.

Because of the computer resource requirements, any Navier-Stokes based design method would

likely be used in combination with other, lower-cost design methods. For example, an initial

airfoil shape designed with a FPE method may prove to be an excellent starting configuration for
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a higher-order design approach. Used in this manner, the present Navier-Stokes inverse design

method should then be able to account for viscous flowfield phenomena that may not be detected

or predicted accurately enough by other methods based on FPE or Euler solution procedures.
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Figure 10. Comparison of target and inverse
airfoil pressures for case no. 2
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Figure 14. Average Aq2 versus multigrid
work performed for case no. 2
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